
Secure Data Sharing Protocol
DRAFT-v0.09, July 2020

David Broman
david.broman@consecio.com

Consecio AB, Sweden

Abstract
This document gives an overview of the Secure Data Sharing (SDS) protocol (DRAFT version). The
objective of the document is to give a formal definition of the security model of the protocol, without
describing low-level protocol and implementation details.

1 Introduction
The Secure Data Sharing (SDS) protocol enables different entities, such a private persons, enterprises,
and systems to share sensitive information in a secure manner. In particular, the system is designed
for scalability, without a single central entity for coordinating access control. The system is based on
a web of trust model, where individual users connect to each other and share data without exposing
their shared private data to anyone else. The model enables end-to-end security between different
users, where the data is still backed up on managed servers. Note, however, that the data are encrypted
such that no-one—including employees working with the servers—can read or alternate the data without
users’ explicit consent.

2 Notations and Definitions
This section introduces basic notations, cryptographic operations, and the main components and keys of
the security model. This section should be used as a reference when reading the rest of the document.

2.1 Basic Notation

An item is either a data item or an opaque item. A data item (that contains a possibly empty sequence
of bytes) is written in lower case letters, such a, b, or m. The infix operator ‖ concatenates the bytes
of two data items, producing a new data item. For instance, a‖b is the concatenation of the two data
items a and b. We use the symbol ⊥ to denote an empty data item. An opaque item is used as a unique
identifier, within a (possibly infinite) set of identifiers. For instance, we might say that x ∈ X is a unique
identifier within the set X. A set of items is denoted using capital letter, such A or B. If the set is a
multiset, it is explicitly stated within its context. Notation P(A) is the powerset of A.

2.2 Cryptographic Operations

The model uses secure hash functions, asymmetric encryption, symmetric encryption, and a pseudo
number generator. The following list defines the algorithms used throughout the text.

• prng(k) is a secure pseudorandom number generator that produces k bits of random data.

• hash(a) is the secure one-way hash of data a. The actual hash algorithm is configurable. The
default algorithm is 256-bit SHA-2.

• aeade(m, k, n, h) is an authenticated encryption with associated data (AEAD) that combines con-
fidentiality, integrity, and authenticity of data. m is the plain text, k the symmetric key, n the 96-bit
nonce, and h a header that is not encrypted, but has authenticity protection. The function returns
a tuple (c, t) with cipher text c and an authentication tag t. See RFC 7366 for encrypt-then-MAC
and RFC 5116 for using AEAD. The nonce is divided into a 32-bit1 counter field nc, a 10-bit2 device
field nd, and a 54-bit3 user identifier field nu. The symmetric algorithm is configurable. The default
algorithm is 128-bit AES using GCM mode.

• aeadd(c, k, n, t, h) is the AEAD decryption function, where c is the cipher text, k the symmetric key,
n the 96-bit nonce, t the authentication tag, and h a header. The function returns the plain text m
or an error ⊥.

• hmac(k,m) creates a hashed message authentication (MAC) data item a of message m using the
secret key k. The default HMAC uses 256-bit SHA-2.

1According to RFC 5116, Section 3.2.
2We assume that the max number of devices per user is 1 024.
3This allocation of 54-bit for the user field assumes that 22 bits are allocated for the home server identification (max 4 194 300

home servers) and 32 bits are used for the unique user per home server (max 4 294 967 296 users per home server)). This means
that the unique userID consists of 32 + 22 = 54 bits.

• keygens() generates a public/private key pair (ks:pub , ks:priv) for digital signatures (hence the s
subscript). Both RSA and Elliptic Curves (EC) can be used, but EC is the default.

• sign(ks:priv ,m) creates a digital signature for plain text m using the private key ks:priv . The returned
signature, denoted g, can only be verified by using the corresponding public key ks:pub .

• verify(ks:pub ,m, g) verifies the digital signature g for plain text message m, using the public key
ks:pub . The function returns a boolean value.

• keygenx() generates a public/private key pair (kx :pub , kx :priv) used for secure key eXchange (hence
the x subscript). The default algorithm is Elliptic-curve Diffie–Hellman (ECDH).

• secret(kx :pub , kx :priv) generates a shared secret based on the public/private key pair (kx :pub , kx :priv).

2.3 System Abstractions

The overall system consists of users, client devices, home servers, and data objects. A user can have
one or more client devices. All devices for one specific user always connects to the same home server,
but different users can connect to different home servers.

A client device can either be stateful (can have a local storage) or be stateless (can be connected
and authenticated, but does not have a local storage). Example of stateful clients are mobile apps and
desktop applications. Example of stateless clients are web clients.

A home server is the connection point for a client device. The home server is responsible for storing
all data objects that the user is the owner of.

A data object, or just an object, consists of general data that may be shared among users. An object
always has one specific owner. An object consists of a set of fields, where each field is a mapping
between a unique label and a field value. Each field can be given different access rights. For more
details about objects, see Section 4.

More formally, we use the following notation for the system abstractions:

• S is the set of home server identifiers.

• U is the set of users identifiers. u ∈ U is globally unique (54-bit globally unique number, guaranteed
by the server).

• Du is the set of devices for a user u. We write |Du| to denote the number of devices for user u. The
set of stateful devices Ds

u and the set of stateless devices D.
u are distinct, that is Ds

u ∪ D.
u = Du

and Ds
u ∩D.

u = ∅. We write D for the set of all client devices in the system.

• O is the set of object identifiers. An object identifier o ∈ O is guaranteed to be globally unique by
using UUID generation or using user identifies as part of the identifer string.

• l ∈ LO is one label of the set of labels in object O. For an object o ∈ O, we write o.l to denote the
field value for label l in object o.

• B is the set of arbitrary binary data. We use this set to represent data where the structure is not
described in this document.

2.4 Keys and Secrets

Within the security model, K is the set of all possible keys and secrets. The main keys and secrets
within the model are summarized below.

• kmaster
u is the 256-bit master key for user u. This is the main secret that is stored on all stateful

devices Ds
u.

• ksessiond is the session token that is generated by the home server when a client device d is logging
in to the server. The session token is stored in a session cookie.

• ksharedu1,u2
is the shared key between users u1 and u2. This is a symmetric key, with the default size

128 bits.

• kconnectu1,u2
is the connect key that is used for secure authentication between two users u1 and u2. The

connect key is only valid until two users have been connected. The default size of the connection
key is 128 bits.

• kobjo is an object key, specific to object o. If there are label-specific object keys, denoted kobjo,l , then
the label-specific object key is used for label l. The object keys are used for symmetric encryption.
See AEAD encryption.

• ks:pubu , ks:privu ∈ K is the public/private key pair for a user u that is used for digital signatures (hence
the s before the colon). The private key is encoded using PKCS 8 and the public key is encoded
using SPKI (Simple public-key infrastructure).

• kx :pubu1
, kx :privu2

, kx :pubu2
, kx :privu1

∈ K are the public/private keys used for key exchange between two
users u1 and u2. User u1 can create the shared secret using function secret(kx :pubu2

, kx :privu1
) and

user u2 generates the same secret using secret(kx :pubu1
, kx :privu2

).

2.5 Trusted Computing Base and Communication Channels

The overall objective of the SDS protocol is to enable secure object exchange between client devices.
That is, within the CIA triad, confidentiality and integrity of object transfers must be ensured without the
need to trust any other components than the client devices themselves. This means that the trusted
computing base (TCB) for a user—regarding confidentiality and integrity of objects—is the user’s client
device. As a consequence, the SDS protocol does not concern security aspects of the operating system
or hardware aspects of client devices. Any other entity in the overall system cannot be trusted. That is,
even home servers do not need to be trusted regarding objects’ confidentiality and integrity.

However, for availability, the home servers are critical. That is, the home servers need to be available
and working correctly for client devices to be able to transfer objects between each other. Note, however,
that if an attacker pretends to be another user, or if the attacker manages to get access to the home
server, it must not affect the confidentiality and integrity of objects. This means that an attacker neither
can read encrypted objects stored on home servers, nor can the attacker alter an object without being
discovered by other client devices.

The different entities in SCS are modeled as a graph G = (V,E), where the the set of vertices
V consists of home severs and client devices, and where the set of edges E represents the com-
munication channels between entities. We define V = S ∪ D, where S ∩ D = ∅. The graph repre-
sents both unidirectional communication channels (e.g., (d1, d2) ∈ E), or bidirectional channels (e.g.,
{(d1, d2), (d2, d1)} ⊆ E.

We assume the following secure communication channels:

• The bidirectional channel {(d, s), (s, d)} ⊆ V between a client device d and a home server s is se-
cured using TLS v1.3. The secure channel is terminated at the home server. After authentication,
a session token ksessiond is used when a client device reconnects to the home server.

• Each home server pair (s1, s2) ∈ S can estamlish secure communication using TLS 1.3. That is, a
home server s1 can authenticate and connect to another server s2 using a secure REST API over
https. The authentication mechanism between home servers is not described in this document
and it does not affect the overall confidentiality and integrity objectives of SDS.

• A client device d1 ∈ D can transfer secret plaintext information to another device d2 ∈ D using
QR codes. Device d1 generates a QR code with the secret plaintext data and user d2 scans the
data. In the SDS protocol, we assume that this is a trusted channel, which means that the QR
code cannot be read by an attacker physically (scanning the QR code using shoulder surfing) or
virtually (that the QR code is sent digitally over an insecure channel).

All other communication between client devices and home servers should be considered as insecure.

3 Registration
The protocol is using end-to-end encryption, which means that the client devices encrypt all data, but
the data can still be shared between users. The data is stored on the home servers, but even if the home
server is compromised, the data cannot be decrypted without the client keys.

Registration in end-to-end mode is only possible for stateful devices because the master secret must
be stored by the client. The procedure is as follows:

1. The client device generates a master secret kmaster by calling prng(256). Note that the user device
does not yet have a user ID.

2. The client generates a salt value msalt = prng(64). A computer generated password key p is
generated using hash(kmaster‖msalt). The salt and password key are sent to the home server.

3. The server stores the password key and the salt.

4. The client is registered but not logged in.

Note that further verification of the user is possible, for instance to use SMS or email verification, to
mitigate that an attacker overloads the server by creating massive amount of user accounts. However,
these implementation details are outside the scope of this document.

4 Objects
An object identifier o ∈ O represents a data object, but it does not state exactly what the content of the
object is. In one specific point in physical (wall-clock) time, the actual data content of an object is allowed
to be different for different clients and servers. The main reason for this is that clients can be in offline
mode. However, the eventual data content is always consistently converging to one specific value. Each
object always has one unique owner, and the consistent data of an object is always stored in the owner’s
home server.

4.1 Events

An object’s data content (field values for certain labels, written as o.l, see Section 2.3) and its meta
information (for instance, the owner of an object) are represented altogether as a sequence of events.
For an object o ∈ O the sequence of events is denoted as a set Eo = {e1, e2, e5, e7}, where the subscript
denotes the event number. Notation dEoe denotes the largest event number of the object, whereas |Eo|
denotes the number of events. For instance, d{e1, e2, e5, e7}e = 7, whereas |{e1, e2, e5, e7}| = 4.

Note that events are ordered using event numbers, but under certain conditions, it is allowed that
certain event numbers are missing. For instance, in the above example, there is no event with event
number 6.

There are six types of events: owner (o), reset (r), access (a), patch (p), delete (d), and transaction
(t). For a specific event e, we use the superscript to denote the type of the event. For instance, et4 is a
transaction event with event number 4, whereas ep7 is a patch event with event number 7.

Each event of a specific event type has certain number of event values associated to the event. We
use the notation e.x to denote an event value with name x for event e. The following list describes all
event values for the six different event types.

• Event type: owner (o). An owner event eo states that an object has a new owner. The event
values for owner events are as follows:

– Event value: eo.userId. This event value is the user identifier u ∈ U for the user who is
the new owner of the object, from this event number and forward, until another owner event
declares another owner.

– Event value: eo.acount. An access counter number counting the number of owner, reset,
and access events in a specific object. The first number is 1, and then incremented by one.
The counter number is used when computing the nonce for an access event and as a way
to guarantee the total order of access changes for an object. If the concurrent changes are
conflicting, the home server rejects such access change. For instance, if two devices are
offline and both make changes to access rights of the object, then the home server decides
which change is accepted, and which is rejected after the two devices are online again. Note
that the access count number is unique to an object, not to a user.

– Event value: eo.signature. The digital signature is used to verify that the change of ownership
is signed by the previous owner. Assume that the current event is eok such that the new owner
is un = eok.userId. The previous owner is up = eom.userId where m is the largest event
number representing an owner event, where m ≤ k. Note that if m = k then un = up, which
means that this is the first owner of an object. Assume also that oc is the current object
identifier. The signature is computed as: eok.signature = sign(ks:privup

, up‖un‖ca‖oc), where
ca = eo.acount. Hence, if it is the first owner of an object, the object is self signed and
eo.acount = 1.

• Event type: reset (r). A reset event er removes all access rights for the whole object or for a
specific object field. A reset event is always followed by an access event that adds new access
rights. This means that a new kobjo or kobjo,l key needs to be generated, which is done as part of the
access event that follows. The event values for reset events are as follows:

– Event value: er.userId. This event value specifies the user who performs the reset. Such a
user must have owner or admin access rights to the object or field.

– Event value: er.label. The event value er.label contains the label l of the field for which
the access is removed (field-level access). If this event value is empty ⊥ then the reset of
accesses is for object-level access.

– Event value: er.acount. An access counter number counting the number of owner, reset,
and access events in a specific object. For more details, see the access counter event value
description for the owner event.

– Event value: er.signature. In end-to-end mode, the digital signature is used to verify who
have made the reset. The signature is computed as: eor.signature = sign(ks:privu , u‖l‖ca‖oc),
where u = er.userId, l = er.label, ca = er.acount, and where oc is the current object
identifier.

• Event type: access (a). An access event ea adds access rights for the whole object or for specific
object fields.

At the object level, there are four possible access levels: owner access (owner), admin access
(admin), read & create access (rc), and read access (r). All except the owner access is handled
by access events (in combination with reset events). An object can only have one owner, and it
is assigned by the owner event. The access rights are defined to have monotonically increasing
privileges r < rc < admin < owner. For instance, the admin access level gives all access rights
that are available for the rc access.

It is possible to give specific access rights on separate fields. At the field level, there are three
possible access levels: admin access (admin), read & write access (rw), and read access (r). If a
user has object-level access and field-level access for a specific object, then the field level access
can give higher access level, not lower. For instance, if a user has r access at the object level,
and field access admin for a field with label l, then the user can read all fields in the whole object.
Moreover, the user can also delete, change access rights for, and write to the field with label l.
The rc access at the object-level makes it possible for a user to create a new field and then give
himself arbitrary field-level access to the new field.

The following table summarizes different actions that can be taken on objects, which events that
are used, and what access levels that are required for taking specific actions.

Object-level access Field-level access
Action Event owner admin rc r admin rw r

Change object owner owner x
Create new field patch x x x
Delete field delete x x x
Change access rights access/reset x x x
Write to field patch x x x x
Read from field n/a x x x x x x x

The event values for access events are as follows:

– Event value: ea.label. The event value ea.label contains the label l of the field that is given
additional access rights (field-level access). If this event value is empty ⊥, then the new
access rights are given at the object level.

– Event value: ea.userId. The user identifier for the user who changes the access rights.

– Event value: ea.deviceNo. The unique device number for user ea.userId.

– Event value: ea.acount. An access counter number counting the number of owner, reset,
and access events in a specific object. For more details, see the access counter event value
description for the owner event.

– Event value: ea.signature. In end-to-end mode, this digital signature makes sure that a user
with admin or owner access rights have given this access. Let l = ea.label, u = ea.userId,
d = ea.deviceNo, and ca = ea.acount. Assume also that oc is the current object identifier.
Then the signature is computed as ea.signature = sign(ks:privu , l‖u‖d‖ca‖oc‖ea.users).

– Event value: ea.users. This event value consists of a sequence of access rights tuples
(r1, r2, . . . rn). Each access right tuple r is a quadruple r = (u, a, k, t), where u ∈ U is the user
identifier that is given access, a is the access level, k the encrypted key used for asymmetric
encryption of the field(s), and t the authentication tag. If e.label 6= ⊥, then this is a field-
level access assignment and a ∈ {admin, rw, r}, else it is an object-level access assignment
and a ∈ {owner, admin, rc, r}. We use the notation ea.users.u to denote the set of all user

identifiers that are assigned new user access rights in event ea. Note that an access event
only states additional users who get access rights, or updates of access rights for a user. To
compute the complete access rights for an object or for an object field, the whole sequence of
access events needs to be considered. The actual field data of an object is encrypted using
symmetric encryption. The key used for encryption/decryption of field data is either kobjo or
kobjo,l . See the patch event for more details.
For a specific object o, we write Uo

obj for the set of users with object-level access. The sets
Uo

obj is computed as follows. Let Eo be the set of events for object o ∈ O. Let n be the largest
event number where ern ∈ Eo and ern.label = ⊥ or value 0 if such reset event does not exist.
Then we have Uo

obj =
⋃∞

k=n e
a
k.users.u where eak.label = ⊥ ∧ eak ∈ Eo.

Let us consider the different cases for an access event eam where m = dEoe.
1. Case eam.label = ⊥. This means that it is an object-level access event. In this case,

all users eam.users.u shall be given access to kobjo . If kobjo does not exist, it is create by
ea.userId (see below).

2. Case eam.label = l and eam.users.u ⊆ Uo
obj. This means that the field with label l uses the

shared object key kobjo and all users eam.users.u has already access to kobjo . The access
right tuples in ea.users assigns ⊥ to key k and tag t.

3. Case eam.label = l and eam.users.u 6⊆ Uo
obj. This means that we have an access update

for a field where at least one user has access to the field, but not the rest of the object.
For this case, there are two sub-cases:
∗ Case kobjo,l does not exist. In this case, the access event is legal only if Uo

obj ⊂
eam.users.u, that is, we encrypt keys for both field-level and object-level access users.
Key kobjo,l is create by ea.userId (see below).

∗ Case kobjo,l exists. kobjo,l is used for giving access to users eam.users.u.

When the access is changed, either the key kobjo or the key kobjo,l is used. As described above,
only one of these keys are selected for a specific label, and from now on we just use the
notation kobj to denote the selected key. If the key does not exist, a new symmetric key is
generated using secure pseudorandom number generation kobj = prng(k), where the default
key size k is 128-bit. Hence, for an access right quadruple (u, a, k, t), the encrypted key k
and tag t is computed as (k, t) = aeade(k

obj , ksharedea.userId,u, n,⊥). This means that the key kobj

is encrypted and stored using the shared secret between the user who changed the access
(an owner or a user with admin access) and the user u who gained access. Hence, user
u can decrypt and obtain the key for encrypting/decrypting field data by performing k′ =
aeadd(k, k

shared
ea.userId,u, n, t,⊥) where k′ is the decrypted version that is equal to kobj . The nonce

is computed using nu = ea.userId, nd = ea.deviceNo, and nc = ea.acount4.

• Event type: patch (p). A patch event ep creates or updates a field value. Several patch events
can be created concurrently for the same object when the devices are offline. The final order of
events is decided by the home server. The event values for patch events are as follows:

– Event value: ep.userId. This event value specifies the user who performs the patch.
– Event value: ep.deviceNo. The unique device number for user ep.userId.
– Event value: ep.label. The event value ep.label contains the label l of the field that is either

created (if it did not exist before) or updated (if existed).
– Event value: ep.pcount. A patch counter number counting the number of patch and delete

events a user with a specific device has created for a specific object. Note that in contrast to
access counting using acount (which is used in owner, reset, and access events), ep.pcount
is not globally unique for an object. This uniqueness is for one object for a specific user on
a specific device. This makes it possible for several users to create patches concurrently,
even in offline mode. The event value starts with 1 and is after that incremented by the client
device. The value is used for computing the nonce.

– Event value: ep.acount. The event value acount denotes the access count number that has
the keys used for patch encryption. By introducing access count points in patches, we get an
explict order relationship between patches and object keys. It also enables the home server
to reject a patch to make it possible for the client to re-encrypt, if the encryption key has
changed.

4Before the counter exceeds its max value of 232 − 1, the shared secret ksharedea.userId,u needs to be renewed. The procedure for
performing this update is outside the scope of this document.

– Event value: ep.cipherText. This event value is used for storing the cipher text after applying
symmetric encryption using AEAD. The cipher text for the patch event is computed as follows:
(ep.cipherText, t) = aeade(m, kobj , n, l‖ca‖oc), where m is the plaintext message of the field
value, kobj is the object key (either kobjo,l or kobjo depending on the access configuration), n is
the nonce, l = ep.label, ca = ep.acount, and oc the current object identifier. The nonce is
computed using nu = ep.userId, nd = ep.deviceNo, and nc = ea.pcount (see Section 2.2).
Note how the AEAD encrypt function also returned the authentication tag t. This tag is stored
in the next event value, ep.authTag.

– Event value: ep.authTag. This is the autentication tag generated when computing the cipher
text value ep.cipherText (see above). Both the cipher text c = ep.cipherText and the authen-
tication tag t = ep.authTag are used when decrypting the patch. The plain text message m is
decrypted as follows: m = aeadd(c, k

obj , n, t, h). Note how the header h can be constructed
by fields that are available in the patch, e.g., h = l‖ca‖oc, where l = ep.label, ca = ep.acount,
and oc the current object identifier.

– Event value: ep.signature. This value can optionally be used to explicitly prove the ori-
gin of the patch. If the signature is not used, then ea.signature = ⊥. Let l = ep.label,
u = ep.userId, d = ep.deviceNo, ca = ep.acount, cp = ep.pcount, c = ep.cipherText, and
t = ep.authTag. Assume also that oc is the current object identifier. Then the signature is
computed as ep.signature = sign(ks:privu , l‖u‖d‖ca‖cp‖c‖t‖oc). Note that this signature only
needs to be used if the users who have access to an object field cannot trust each other.

Note that labels, such as ep.label, are not protected for confidentiality. If the application wants
to protect the label itself, it can generate a unique label using e.g. UUIDv1, and then include the
mapping between this unique label and the real label inside an encrypted field. Because this can
be done on top of SDS, it is not included in this description.

• Event type: delete (d). A delete event ed deletes a specific field. The event values for delete
events are as follows:

– Event value: ed.userId. This event value specifies the user who deletes the field.

– Event value: ed.deviceNo. The unique device number for user ed.userId.

– Event value: ed.label. The event value ed.label contains the label l of the field that is deleted.

– Event value: ed.pcount. A patch counter number counting the number of patch and delete
events a user with a specific device has created for a specific object. See the description of
pcount in the patch event.

– Event value: ed.acount. The even value acount denotes the access count number that has
the object key for this field.

– Event value: ed.signature. An optional value that explicitly proves the origin of the delete
event. If the signature is not used, then ed.signature = ⊥. Let l = ed.label, u = ed.userId,
d = ed.deviceNo, ca = ed.acount, and cp = ed.pcount. Assume also that oc is the current ob-
ject identifier. Then the signature is computed as ed.signature = sign(ks:privu , l‖u‖d‖ca‖cp‖oc).

• Event type: transaction (t). A transaction event et is used for grouping together events sent by a
client. It does not have any security implications in itself. It is used by a client device to keep track
of events that have not yet been acknowledged by a home server. The event values for transaction
events are as follows:

– Event value: et.userId. The user who created the transaction.

– Event value: et.deviceNo. The unique device number for user et.userId.

– Event value: et.transactionNo. An integer number that is unique to a user on a specific
device for a specific object.

5 Conclusions
This document presents a DRAFT of the Secure Data Sharing (SDS) protocol. The current version de-
scribes most of the aspects of the model. However, certain parts are not yet included in the description,
including user authentication and user connect management.

Acknowledgements
Thanks to Jacob Wahlgren and Sam Hedin for their work on formalizing parts of the protocol in the
Tamarin prover. The input from their work has improved the model and solved a few critical issues in
early drafts of this document.

Revisions
• DRAFT-v0.01 Initial version with notations, definitions, and authenticaton.

• DRAFT-v0.02 New sub-section about trusted computing base and communication channels.

• DRAFT-v0.03 Initial parts of the object formalization.

• DRAFT-v0.04 Added owner and access events. Updated AEAD to support nonce. Minor updates
in various places in the document.

• DRAFT-v0.05 Added the reset event.

• DRAFT-v0.06 Solved security issues in owner and access events. Added patch, delete, and trans-
action events.

• DRAFT-v0.07 Minor fixes.

• DRAFT-v0.08 Updated the name of the protocol and removed basic mode.

• DRAFT-v0.09 Minor edits before the first public release.

